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Abstract: Kalman filters are used in many different areas that require a solution to discrete-data linear 

filtering problems. Especially in the field of electric controls, Kalman filters represent a used approach and they 

are an integral part of many states of the art of electric controls. However, the practical implementation of the 

Kalman Filter often presents difficulties due to the challenging task of getting a good estimate of the covariance 

matrix of the process noise and covariance matrix of the measurement noise. A fitting and simultaneous choice 

of these two matrices based on a feedback loop within the Kalman filter realized by the filter itself can directly  

lead to an asymptotically stable operating Kalman filter after a reasonable amount of iterations.  

In this paper an approach to apply a feedback loop enabling dynamic values of the covariance matrix process 

noise and covariance matrix of the measurement noise is presented. This approach will be applied in 

simulations using Matlab/Simulink.  
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1 Introduction 

Since its publication more than five decades ago the 

Kalman filters found usage in many different areas 

that require a solution to discrete-data linear 

filtering problems. Especially in the field of electric 

controls Kalman filters presented a revolutionary 

opportunity and disruptively changed the design of 

certain electric controls. Kalman Filters (KF) are 

used for state estimation and provide accurate 

estimates in the presence of deterministic and 

stochastic disturbances and produce results superior 

to most other previously used approaches [1].  This 

paper aims to present an approach for a Kalman 

filter tuning within the Kalman filters of a DC drive 

and a virtual sensor. Both devices are intended for 

industrial use primarily: the motor in several classic 

industrial applications and the sensor to observe a 1 

Farad capacitor intended for use in the automotive 

industry. The actual tuning within the Kalman filter 

aims to set 𝑄𝑘 and Rk as dynamic variables that are 

calculated again in a feedback loop with every 

iteration of the simulated time. If executed carefully 

and correctly, this approach should enable the user 

of the observed system to obtain far more precise 

estimations for 𝑄𝑘 and Rk than a static estimation of 

𝑄𝑘 and Rk gathered by ”trial-and-error” methods [2]. 

The approach intends to rather find a mathematical 

solution to the problem than a heuristically found 

solution. This solution will be based on the principal  

 

formulas for the covariance matrix Pk and the 

Kalman gain 𝑘𝑘  [3]. The validity and the 

effectiveness of the proposed Kalman filter tuning 

method will finally be tested in simulations of both 

in a DC-Motor and in a sensor. The approach should 

then be applicable to nearly every similar problem. 

The paper is organized in the following way. 

Section 2 is devoted to the modelling of the DC-

Motor and the sensor. Section 3 considers the design 

of matrix Qk and 𝑅𝑘. Section 4 shows the two 

applications using simulations performed by Matlab. 

2 Modelling 

2.1    Modelling of the electric drive 

DC Drives are very commonly used in numerous 

industrial applications among a huge variety of 

manufacturing processes. This design of an electric 

drive is still the most common type of motor 

velocity control for applications that are requiring 

very fine precise control over wide ranges of 

velocity with a simultaneously high torque. For the 

first part of the assignment to implement dynamic 

Qk and Rk the following model of a DC-Drive will 

be considered: 

𝑈𝐴 = 𝐼𝐴𝑅𝐴+𝐿𝐴
𝑑𝐼𝐴

𝑑𝑡
+ 𝑈𝑞                               (1) 
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𝑘𝜑𝐼𝐴 − 𝑘𝑓𝜔 − 𝐽
𝑑𝜔

𝑑𝑡
= 0                                     (2) 

𝑈𝑞 = 𝑘𝜑𝜔                                                             (3) 

where  𝑈𝐴 is the input voltage, 𝐼𝐴 is the current, 𝐿𝐴 

and 𝑅𝐴 represent the inductance and resistance 

respectively of the DC drive. Parameters 𝑘𝜑, 𝑘𝑓  and 

𝐽 are the motor coefficient, friction coefficient and 

inertia of the motor respectively. Finally, 𝜔 is the 

velocity and 𝑈𝑞 is the induced voltage.  

  

2.2   Modelling of the Sensor 

By being present in any form of feedback control 

virtual sensors represent one of the most important 

topics in the fields of measurement and control. The 

second simulation in this paper will therefore 

emphasize the possibility of the use of a Kalman 

filter as an observer to obtain measurements which 

can often require sophisticated and expensive 

devices. Especially the measurement of velocity in 

mechanical systems and the measurement of current 

in electrical systems is usually either very expensive 

or not precise. The sensor viewed in this paper is 

based on the following low-pass-filter with the input 

variable u1 representing the external voltage, the 

output variable u2 representing the capacitor voltage. 

After considering the basic dynamics of a capacitor 

we can obtain that: 

(

𝑑𝑢𝑐(𝑡)

𝑑𝑡
𝑑𝑖𝑐(𝑡)

𝑑𝑡

) = (
0

1

𝐶

0 0
) (

𝑢𝑐(𝑡)
𝑖𝑐(𝑡)

)                            (4) 

It can be concluded that only the constant a0 must be 

used to estimate the current ic because C is assumed 

to be known. Following the Forward Euler 

Approximation, the following discrete dynamic 

system can then be derived: 

(
𝑢𝑐(𝑘)

𝑖𝑐(𝑘)
) = (

1
𝑇𝑆

𝐶

0 1
) (

𝑢𝑐(𝑘 − 1)

𝑖𝑐(𝑘 − 1)
)        (5) 

together with the required matrix Q: 

𝑄 = (
𝑞11 0
0 𝑞22

)                                                    (6) 

with 𝑞22 >> 𝑞11 the Kalman filter can be assembled 

according to the general laws that apply for all 

Kalman filters and are described in the next chapter 

[6]. 

3 Design and Tuning of 𝑸𝒌 and Rk 

One of the most critical parts while designing a 

Kalman filter is the choice of the covariance 

matrices 𝑄𝑘 and Rk. A suitable choice for these 

matrices is key to a smooth operation and 

performance of the Kalman filter and the whole 

control system. In the context of the Kalman filter, 

the Matrix 𝑄𝑘 represents the statistical description 

of the drive model. An increased 𝑄𝑘 therefore 

indicates either a heavy system noise of our 

increased uncertainty concerning the given 

parameters. Likewise, increasing elements of the 𝑄𝑘 

matrix will result in a higher Kalman gain and 

therefore in a faster dynamic of the filter. The 

confidence with regards to the measurement noise is 

represented by the covariance matrix Rk. Therefore, 

the higher the values of the elements of Rk are 

increased, the higher the measurements are affected 

by noise. As a result, the confidence of the 

measurement results is lower the higher Rk is. 

For the lack of statistical data to conclude their off-

diagonal terms the covariance matrices are 

commonly assumed and represented by a static 

value. In order to predict the behavior of the control, 

we need to find a recursion for 𝑄𝑘  based on 𝑃𝑘
−: 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄𝑘                                           (7) 

and 𝑃𝑘−1
− : 

𝑃𝑘−1
− = 𝐴𝑃𝑘−2𝐴𝑇 + 𝑄𝑘−1.                                 (8) 

Therefore, 𝑃𝑘
− minus 𝑃𝑘−1

−  equals: 

𝑃𝑘
− − 𝑃𝑘−1

− = 𝐴𝑃𝑘−1𝐴𝑇 − 𝐴𝑃𝑘−2𝐴𝑇 + 𝑄𝑘 − 𝑄𝑘−1.       (9) 

As a result, Qk results as 

𝑄𝑘 = 𝑄𝑘−1 + ∆𝑃𝑘
− − 𝐴𝑃𝑘−1𝐴𝑇 + 𝐴𝑃𝑘−2𝐴𝑇 ,     (10)                                  

and finally 

𝑄𝑘 = 𝑄𝑘−1 + ∆𝑃𝑘
− − 𝐴∆𝑃𝑘−1𝐴𝑇 ,               (11) 

where ∆𝑃𝑘
− = 𝑃𝑘

− − 𝑃𝑘−1
− , and 

 ∆𝑃𝑘−1 = 𝑃𝑘−1−𝑃𝑘−2. 
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This equation allows Qk to be dynamically 

calculated with every iteration within the 

simulation. Similarly, a solution for Rk is needed. 

For that solution we have to consider the formula of 

the Kalman gain 𝑘𝑘 in the form of: 

𝑘𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅𝑘)−1                          (12)   

which can be written as 

 

𝑃𝑘
−𝐻𝑇 = 𝑘𝑘𝐻𝑃𝑘

−𝐻𝑇 + 𝑘𝑘𝑅𝑘.                           (13) 

Multiplied with 𝑘𝑘
𝑇 the following relation is 

obtained: 

𝑘𝑘
𝑇𝑃𝑘

−
𝐻𝑇 = 𝑘𝑘

𝑇𝑘𝑘𝐻𝑃𝑘
−

𝐻𝑇 + 𝑘𝑘
𝑇𝑘𝑘𝑅𝑘.                          (14) 

Therefore, it is possible to calculate 𝑅𝑘 as 

𝑅𝑘 = (𝑘𝑘
𝑇𝑘𝑘)−1(𝑘𝑘

𝑇
𝑃𝑘

−𝐻𝑇 − 𝑘𝑘
𝑇𝑘𝑘𝐻𝑃𝑘

−𝐻𝑇)         (15) 

and finally: 

𝑅𝑘 = −𝐻𝑃𝑘
−𝐻𝑇+(𝑘𝑘

𝑇𝑘𝑘)−1𝑘𝑘
𝑇𝑃𝑘

−𝐻𝑇 .                  (16)  

In the same way  the following relation is obtained: 

𝑅𝑘−1 = −𝐻𝑃𝑘−1
− 𝐻𝑇+(𝑘𝑘−1

𝑇 𝑘𝑘−1)−1𝑘𝑘−1
𝑇 𝑃𝑘−1

− 𝐻𝑇. (17) 

To conclude, subtracting (17) from (16), then 

𝑅𝑘 = 𝑅𝑘−1 − 𝐻𝑃𝑘
−𝐻𝑇+(𝑘𝑘

𝑇𝑘𝑘)−1𝑘𝑘
𝑇𝑃𝑘

−𝐻𝑇 

+ 𝐻𝑃𝑘−1
− 𝐻𝑇−(𝑘𝑘−1

𝑇 𝑘𝑘−1)−1𝑘𝑘−1
𝑇 𝑃𝑘−1

− 𝐻𝑇 ,              (18) 

which can be written in the following way: 

𝑅𝑘 = 𝑅𝑘−1 − 𝐻∆𝑃𝑘
−𝐻𝑇+(𝑘𝑘

𝑇𝑘𝑘)−1𝑘𝑘
𝑇𝑃𝑘

−𝐻𝑇 

−(𝑘𝑘−1
𝑇 𝑘𝑘−1)−1𝑘𝑘−1

𝑇 𝑃𝑘−1
− 𝐻𝑇, 

 

where ∆𝑃𝑘
− = 𝑃𝑘

− − 𝑃𝑘−1
− . 

 

 

 

 

4 Application 

4.1    Application within a DC drive 

The Kalman filter described in the previous 

chapter is now used within the DC-drive in a 

simulation using Matlab/Simulink. Within the 

DC-drive, the Kalman filter is used to control 

the velocity of the DC-drive. 

Fig. 3. Actual velocity compared to Kalman 

estimation 

The results of the simulation show a very precise 

behavior of the Kalman filter: shortly after 

initializing the filter matches the actual velocity of 

the DC-drive, see Fig. 3. 

4.2    Application within a Kalman filter 

based sensor 

The Kalman based sensor is as well simulated 

using MatLab/Simulink. In the simulated 

system the Kalman filter is used to measure the 

voltage of the system derived from the electric 

capacity as described in a previous paragraph. 

The simulated capacitor is based on an existing 

capacitor model. In the first simulation, the 

voltage that should have the shape of an ideal 

cosine wave is estimated by a mathematical 

derivative, see Fig. 4.  
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Fig. 4. Ideal Sinus compared to calculation by 

derivative 

Although the estimation generally portrays the 

shape of a sinus wave, the high mean variation of 

the estimation is clearly visible. The next step is the 

use of the actual Kalman filter with dynamic tuning 

of Qk and Rk. 

 

 Fig. 5 Ideal Sinus compared to Kalman estimation 

(Phase shift) 

As it is visible, the Kalman filter produces a much 

more accurate estimation with minimal mean 

variation from the sinus curve. However, due to the 

internal processing time of the Kalman filter a slight 

phase shift becomes visible, see Fig. 5. 

5 Conclusion 

An approach for tuning Kalman filters in linear 

cases has been presented. An application concerning 

a DC-Drive and a sensor has been proposed. The 

use of this approach is applicable in all linear cases 

to achieve an acceleration of the convergence of the 

estimation.  
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